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Abstract

Max Born, not Werner Heisenberg as is usually assumed, created the original version
of Quantum Theory, “Matrix Mechanics”. The fundamental laws, commutation relations
and quantum equations of motion, resulted from Born’s recognition of the basic principle
of quantum physics: To each change in nature corresponds an integer number
of quanta of action h. Action variables may only change by integer values of h, re-
quiring all other physical quantities to change by discrete steps, “quantum jumps”. The
mathematical implementation of this principle led to commutation relations and quantum
equations of motion, published by Born and Jordan in September 1925. Most impor-
tantly, the classical notion of “time”, as one common continuous time variable and nature
evolving continuously ”in time”, has to be replaced by an infinite manifold of transition
rates for discontinuous quantum transitions. The notion of a point in space-time looses its
physical significance. Quantum uncertainties of time, position, just as any other physical
quantity, are necessary consequences of quantization of action. The essential differences of
Born’s discontinuous quantum physics to the standard interpretation, relying on classical
space-time concepts, will be described.

1 Introduction

When Max Born and Pascual Jordan published the fundamental equations of Quan-
tum Theory in September 1925 [1], their highly peculiar mathematical form was met with
widespread skepticism and misunderstanding. Physical quantities were no longer represented
by continuous variables, but by Hermitian matrices; the familiar differential equation of clas-
sical physics were replaced by mysterious equations relating different matrices to each other.
Before the scientific community had the time to analyze the rationale leading to these equa-
tions and their physical content thoroughly, Schrödinger published the stationary Schrödinger
equation [2] in late January 1926, five months later the time-dependent Schrödinger equation
[3]. Their mathematical form was more familiar, partial differential equations. But the central
quantity to be determined, the wave-function ψ(r, t), was equally mysterious.

Both Matrix and Wave Mechanics originated from the conviction that the classical con-
cepts of Bohr’s Old Quantum Theory had to be abandoned to understand quantum phenom-
ena; radically new concepts were required. But Born-Jordan on one side and Schrödinger
on the other had very different ideas concerning the physical content to be described. They
agreed that radical changes away from the foundations of classical physics were required; but
the directions into which they proceeded were opposite. Matrix Mechanics was built on the
particle concept. That was still similar to Newtonian mechanics. But here the similarity ends;
already several years before the final version of Matrix Mechanics was published, Born had
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convinced himself that the very foundation of Newtonian physics is no longer valid on atomic
and subatomic scales: The space-time continuum as prerequisite for the formulation of all
laws of physics is no longer applicable to the quantum scale. All changes in nature proceed by
discontinuous and quantized steps, ”quantum leaps” (”Quantensprünge”). The philosophical
principle ’Natura non facit saltus’ (nature does not make jumps) is no longer valid; a
radically new concept of space and time on the quantum scale is required.

Schrödinger rejected Born’s new physical concept; the classical concept of space-time as
given ”a priori” should be preserved. Continuity in space and time should remain to be the
only acceptable way to conceive of processes in nature and should be reflected in the formu-
lation of its fundamental laws. Schrödinger’s radical change away from Newtonian physics
consisted in elimination of the particle concept; on the elementary scale, electrons aud all
other material objects should be built up from waves.

The physical interpretation of the new quantum laws, which finally did gain widespread
acceptance, was not that of the authors themselves, but the Copenhagen Interpretation of
Werner Heisenberg and Niels Bohr. During the twelve years preceding the arrival of the new
Quantum Theories, Bohr had established himself as the highest authority of Quantum The-
ory. His ”Old Quantum Theory” was based on essentially classical concepts. The laws of
Newtonian physics were supplemented by a number of heuristic rules (”principles”), which
selected “stationary states” of electrons circling the nucleus. Radiation was supposed to re-
tain its classical character. Although the original version of the new quantum laws, Matrix
Mechanics, was published by Born and Jordan [1], the principle merit for their development
was attributed to Werner Heisenberg. His ”reintrepretation (”Umdeutung”) paper” [4] was
argued to provide the decisive step. Heisenberg had been Born’s collaborator in Göttingen;
during the crucial time of the discovery of the Matrix Mechanics in 1924/25, however, Heisen-
berg was in Copenhagen. He retained the essentially classical mode of thought which was
part of Bohr’s Old Quantum Theory; similar to Bohr, Heisenberg considered the final prod-
uct of Matrix Mechanics to constitute a mathematical formalism only. Bohr’s influence was
sufficient to attribute the merit for Matrix Mechanics to Heisenberg, thereby consolidating
Bohr’s own classical concepts.

2 The Fundamental Principle of Quantum Physics

The basic laws were not only published by Born and Jordan, they were also constructed
from the new mode of thought, which Born deemed was necessary1. Already well before 1925,
Born became convinced that the entire system of basic concepts in physics, which had been
used to describe the macroscopic world of common experience, would have to be rebuilt rad-
ically. The classical space-time continuum as basis for all understanding must be abandoned
on the elementary quantum scale. In December 1919 he wrote to Wolfgang Pauli [6]:
”For quite some time already I am pursuing this idea, although without success so far: The
solution of all quantum problems must be based on very fundamental principles. One should
not transfer the concept of space-time as a four-dimensional continuum from the macroscopic
world of common experience to the atomistic world; manifestly the latter requires a different

1The recent book by the present author [5], contains a general overview of the development of elementary
Quantum Theory, emphasizing Born’s decisive contributions.
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type of manifold”.2

In lectures during the winter semester of 1923/24 (published in November 1924 [7]) Born
specified what he had in mind:
1) ”The systematic transformation of classical mechanics into a discontinuous atomic me-
chanics”.3

2) “The new mechanics replaces the continuous manifold of (classical) states by a discrete
manifold, which is described by ”quantum numbers”.4

3) “Transitions between different states are determined by probabilities”.5

Already at that time, Born must have had a precise idea, a fundamental principle, how
to implement the program he had defined. This could not be Bohr’s Old Quantum Theory,
which was constructed from heuristic arguments based on classical concepts. The lectures
of 1923/24 [7] demonstrated their narrow limits. As Born had stated in 1919 [6], something
radically new was required. It was clear to mostly everyone, that quantization of action con-
tained the key; the main question was: Is there a general principle to be drawn, applicable to
all physical phenomena? Born had recognized this fundamental principle of quantum physics:
As the term “action” suggests, the dynamical behavior of all physical systems is quantized:
At the elementary level, all changes in nature consists of discontinuous steps, “quantum
jumps” (“Quantensprünge”). All elementary changes correspond to integer numbers
of quanta of action. Action variables may only change by integer multiples of
h. This general quantization condition provides the basis for a logically consistent Quantum
Theory; all further conclusions are direct consequences of this quantization condition.

The key is contained in “discrete manifold described by quantum numbers”: Different quan-
tum states n and m are to be distinguished by different sets of integers n = (n1, n2, n3, ...)
and m = (m1,m2,m3, ....). The integers n characterize the action variables Jn of the cor-
responding state. Transitions between quantum states n and m correspond to changes of
action variables ∆Jn,m by integer multiples of Planck’s quantum of action:

∆Jn,m = ((n1 −m1)h, (n2 −m2)h, (n3 −m3)h, .....). (1)

Discontinuous behavior of all elementary processes requires a new concept of space-time
at the atomic and subatomic level. The most important consequence concerns ”time”. Clas-
sically, it is assumed that there exists one common time variable t and all changes in nature

2”Gerade diesen Gedanken verfolge ich seit längerer Zeit, allerdings bisher ohne positiven Erfolg, nämlich,
dass der Ausweg aus allen Quantenschwierigkeiten von ganz prinzipiellen Punkten aus gesucht werden muss:
man darf die Begriffe des Raumes und der Zeit als ein 4-dimensionales Kontinuum nicht von der makroskopis-
chen Erfahrungswelt auf die atomistische Welt übertragen, diese verlangt offenbar eine andere Art von Man-
nigfaltigkeit als adäquates Bild”.

3“Die systematische Verwandlung der klassischen Mechanik in eine diskontinuierliche Atommechanik”. The
book “Vorlesungen über Atommechanik, 1. Band” (Lectures on atomic mechanics, 1st volume) [7] is primarily
devoted to describe Bohr’s “Old Quantum Theory” and to demonstrate its deficiencies. At the very end on
page 341, Born defines the path towards the “final atomic mechanics” (“endgültige Atommechanik”). Born
had used this term in the preface, the intended “2nd volume” should contain the “endgültige Atommechanik”.

4“Diese neue Mechanik ist dadurch gekennzeichnet, dass an Stelle der kontinuierlichen Mannigfaltigkeit von
Zuständen eine diskrete Mannigfaltigkeit tritt, die durch Quantenzahlen beschrieben wird”. (page 18)

5Wir schreiben jedem Übergang zwischen zwei stationären Zuständen eine a priori Wahrscheinlichkeit zu.’’
(page 10)
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are continuous in this time variable t. The differential equations of motion of classical physics
rely on this assumption. Continuity in time suggested that nature behaves deterministically,
at least in principle. For given initial conditions at some point in time, the solution of the
differential equations seemingly determine the behavior at any time in the past or future.
Discontinuous quantum behavior eliminates the justification for the notion of a continuous
time; the classical time variable t has no physical relevance at the quantum scale. Further-
more, the replacement of the differential equations of motion of classical physics by quantum
mechanical difference equations eliminates the justification for determinism. Born concludes
“Transitions between different states are determined by probabilities”. The continuous time of
classical physics has to be replaced by an infinite manifold of transition rates of discontinuous
and statistical quantum transitions.

3 The Early Born-Einstein Debate

Born’s intention to replace the classical space-time continuum by a discrete manifold did
not come from sudden inspiration, but grew out of discussions with Einstein. Even before
Born, Einstein questioned the relevance of the space-time continuum on atomic and subatomic
scales. Not only his contributions to Quantum Theory of radiation [8, 9], but also to Relativ-
ity Theory played a decisive role. In the lecture “On the Theory of Relativity” [10], Einstein
explains his motives:
”The abandonment of certain notions connected with space, time, and motion hitherto treated
as fundamentals must not be regarded as arbitrary, but only as conditioned by observed facts.....
It is in general one of the essential features of the theory of relativity that it is at pains to
work out the relations between general concepts and empirical facts more precisely. The fun-
damental principle here is that the justification for a physical concept lies exclusively in its
clear and unambiguous relation to facts that can be experienced”. 6

This same reasoning also raised the question whether the classical concept about space and
time could be maintained at atomic scales. How could the concept of a “point” and extremely
small distances in space-time be clearly and unambiguously defined by measurements? On
scales of common use, rigid rods and clocks could be used to measure lengths and times; on
very large and cosmological scales, the light path replaced rigid rods. On subatomic scales,
however, these measuring tools failed.

Discontinuous behavior was not alien to Einstein, either. In 1905, he had postulated that
radiation consists of elementary objects, photons, which can only be created and absorbed
as finite entities [8]. In late 1916 and early 1917, Einstein’s ”Quantentheorie der Strahlung”
(Quantum Theory of Radiation) [9] used the photon concept to describe the necessary con-
ditions for thermal equilibrium between matter and radiation. The transfer of energy and
momentum between matter and radiation occurs in discontinuous and statistical steps by
emission and absorption of photons. The question whether a continuum theory could still be
maintained on the quantum scale arose and had to be answered.

6”Das Aufgeben gewisser bisher als fundamental behandelter Begriffe über Raum, Zeit und Bewegung darf
nicht als freiwillig aufgefasst werden, sondern nur als bedingt durch beobachtete Tatsachen...... Es ist überhaupt
einer der wesentlichsten Züge der Relativitätstheorie, dass sie bemüht ist, die Beziehungen der allgemeinen Be-
griffe zu den erlebbaren Tatsachen schärfer herauszuarbeiten. Dabei gilt stets als Grundsatz, dass die Berechti-
gung eines physikalischen Begriffes ausschließlich in seiner klaren und eindeutigen Beziehung zu den erlebbaren
Tatsachen beruht.”
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So it is not really surprising that Einstein questioned the relevance of classical space-time
concepts on atomic scales already before Born did. Einstein’s letter of 1917 [11] testifies that
he struggles with the problem of how to maintain a continuum theory and how to define
lengths and times on the quantum scale.
”Strictly speaking, even the concept of the ds2 evaporates into an empty abstraction, in that
ds2 cannot be construed strictly as a measurement result..... If the molecular interpretation
of matter is the correct (practicable) one, that is, if a portion of the world must be repre-
sented as a finite number of moving points, then the continuum in modern theory contains
much too multi-farious possibilities. I also believe that this multifariousness is to blame for
the foundering of our tools of description on quantum theory. The question seems to me to
be how one can formulate statements about a discontinuum without resorting to a continuum
(space-time); the latter would have to be banished from the theory as an extra construction
that is not justified by the essence of the problem and that corresponds to nothing ”real”.” 7

Einstein admits that he has no solution; he decides to tentatively retain the continuum as
mathematical tool and let eventual success decide its usefulness.
”A logically more satisfactory description is obtainable (a posteriori) by relating the theory’s
more complex individual solutions to observed facts. A standard could then be correlated with
a certain type of atomic system that could not claim a privileged position in the theory. Thus
a four-dimensional continuum can still be maintained and, in upholding the postulate of gen-
eral covariance, it then has the advantage of circumventing the arbitrariness in the choice of
coordinates”. 8

In a lecture “Geometry and Experience” (“Geometrie und Erfahrung”) [12] in January
1921, Einstein again discusses the problem of space-time on the quantum scale. A mathe-
matical, i.e. purely axiomatic, geometry of space-time must be distinguished from “practical
geometry”. Whereas the first constitutes an abstract mathematical formalism, the latter is
meant to be a physical science, which includes the possibility of measurements. Whereas
mathematics as such is an exact science, its relation to “physical reality” should be viewed
critically. While Relativity Theory constitutes the primary topic of the lecture, the problem
of space-time on atomic scales is addressed as well. In particular the notions of “point” and
“line” loose their physical significance on subatomic scales.
”As far as the propositions of mathematics refer to reality, they are not certain; and as far
as they are certain, they do not refer to reality..... In axiomatic geometry the words ”point”,
”straight line”, etc., stand only for empty conceptual schemata. That which gives them content

7”Streng genommen verflüchtigt sich auch der Begriff des ds2 in eine leere Abstraktion, indem ds2 nicht
strenge als Messresultat aufgefasst werden kann.... Wenn die molekulare Auffassung der Materie die richtige
(zweckmäßige) ist, d. h. wenn ein Teil der Welt durch eine endliche Zahl bewegter Punkte darzustellen ist, so
enthält das Kontinuum der heutigen Theorie zu viel Mannigfaltigkeit der Möglichkeiten. Auch ich glaube, dass
dieses zu viel daran schuld ist, dass unsere heutigen Mittel der Beschreibung an der Quantentheorie scheitern.
Die Frage scheint mir, wie man über ein Diskontinuum Aussagen formulieren kann, ohne ein Kontinuum
(Raum-Zeit) zu Hilfe zu nehmen; letzteres wäre als eine im Wesen des Problems nicht gerechtfertigte zusätzliche
Konstruktion, der nichts ”Reales” entspricht, aus der Theorie zu verbannen.”

8”Eine logisch befriedigendere Darstellung lässt sich dadurch (a posteriori) erzielen, dass man die einzelnen
komplexeren Lösungen der Theorie mit Beobachtungsthatsachen in Beziehung setzt. Ein Maßstab würde dann
einem Atomsystem von gewisser Art entsprechen, welches in der Theorie keine Sonderstellung beanspruchen
könnte. Dabei kann man immer noch an dem vierdimensionalen Kontinuum festhalten und hat dann bei Festal-
ten an dem Postulat der allgemeinen Kovarianz den Vorteil, der Willkür einer Koordinatenwahl zu umgehen.”
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is not relevant to mathematics......All length-measurements in physics constitute practical ge-
ometry........It is true that this proposed physical interpretation of geometry breaks down when
applied immediately to spaces of submolecular order of magnitude”. 9

Nevertheless, Einstein does not rule out that a mathematical field theory might still be
of use in quantum physics, even if the mathematical variables do not have their classical sig-
nificance. “The attempt may still be made to ascribe physical meaning to those field concepts
which have been physically defined for the purpose of describing the geometrical behavior of
bodies which are large as compared with the molecule. Success alone can decide as to the jus-
tification of such an attempt, which postulates physical reality for the fundamental principles
of Riemann’s geometry outside of the domain of their physical definitions. It might possibly
turn out that this extrapolation has no better warrant than the extrapolation of the concept of
temperature to parts of a body of molecular order of magnitude.” 10

During these years, Born and Einstein met and discussed regularly. And Born explic-
itly refers to Einstein when he questions the relevance of precise coordinates at atomic and
subatomic scales. “Relativity Theory emerged because Einstein recognized the impossibility in
principle to determine absolute simultaneity of two events occurring in different locations”.
And he concludes “The true laws of nature are determined only by such quantities, which are
observable in principle [13]11..... If magnitudes lacking this property occur in our theories,
it is a symptom of something defective. In order to determine lengths or times, measuring
rods and clocks are required. The latter, however, consist themselves of atoms and therefore
break down in the realm of atomic dimensions.....it appears justified to give up altogether the
description of atoms by means of such quantities as ”coordinates of an electron” at a given
time”[14]. If “exact” is taken to have mathematical significance, neither position nor time nor
any other physical quantity may be measured or known “exactly”.

Both Einstein and Born had reached the conclusion, that the traditional concept of space-
time of macroscopic physics cannot simply be transferred to quantum physics. Basic notions
such as a point in space-time and a precise coordinate system are mathematical constructs,
but cannot be defined experimentally; arbitrarily small intervals are unmeasurable in princi-
ple. The discontinuities occurring in the interaction of radiation with matter indicate that the

9“Insofern sich die Sätze der Mathematik auf die Wirklichkeit beziehen, sind sie nicht sicher, und in-
sofern sie sicher sind, beziehen sie sich nicht auf die Wirklichkeit...... Unter ”Punkt”, ”Gerade” usw. sind
in der axiomatischen Geometrie inhaltsleere Begriffsschemata zu verstehen. Was ihnen Inhalt gibt, gehört
nicht zur Mathematik.....Alle Längenmessung in der Physik ist praktische Geometrie.......Die hier vertretene
physikalische Interpretation der Geometrie versagt zwar bei ihrer unmittelbaren Anwendung auf Räume von
submolekularer Größenordnung.”

10“Man kann versuchen, den Feldbegriffen, die man zur Beschreibung des geometrischen Verhaltens
von gegenüber dem Molekül großen Körpern physikalisch definiert hat, auch dann physikalische Bedeutung
zuzuschreiben, wenn es sich um die Beschreibung der elektrischen Elementarteilchen handelt, die die Ma-
terie konstituieren. Nur der Erfolg kann über die Berechtigung eines solchen Versuches entscheiden, der den
Grundbegriffen der Riemannschen Geometrie über ihren physikalischen Definitionsbereich hinaus physikalische
Realität zuspricht. Möglicherweise könnte es sich zeigen, dass diese Extrapolation ebensowenig angezeigt ist
wie diejenige des Temperaturbegriffes auf Teile eines Körpers von molekularer Größenordnung.

11“So ist die Relativitätstheorie dadurch entstanden, dass Einstein die prinzipielle Unmöglichkeit erkannte,
absolute Gleichzeitigkeit zweier an verschiedenen 0rten stattfindender Ereignisse festzustellen....Ein Grundsatz
von grosser Tragweite und Fruchtbarkeit besagt, dass in die wahren Naturgesetze nur solche Größen eingehen,
die prinziplell beobachtbar, feststellbar sind.”
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notion of ”continuum” ”would have to be banished from the theory as an extra construction
that is not justified by the essence of the problem and that corresponds to nothing ”real”.”[11]
Nevertheless, Born and Einstein chose different mathematical routes to attack the quantum
puzzle. Einstein retained differential equations; he accepted that the functions to be deter-
mined and the continuous variables used might not have clear physical significance, hoping
that ”(a posteriori) the theory’s more complex individual solutions could be related to ob-
served facts”[11]. Born, on the other hand, aimed for a mathematical representation, which
should express the discontinuous and statistical behavior of nature explicitly. The space-time
continuum should no longer be part of the theoretical formalism. Quite generally, the classi-
cal differential equations should be transformed into quantum mechanical difference equations.

In his letter of Jan 27, 1920, Einstein reacted to Born’s suggestion:[15]
”I do not believe that one must abandon the continuum in order to solve the problem of
quanta.... In principle, of course, the continuum could be abandoned. But how one should
describe the relative motion of n points without the continuum?....I believe as before that an
overdetermination ought to be sought with differential equations for which the solutions no
longer have continuum properties. But how??....12

Similarly several weeks later: [16]
”I dont believe that the theory can dispense with the continuum. But my attempts at giving
tangible form to my pet idea of interpreting quantum structure through an overdetermination
with differential equations refuse to succeed.”13

During the following decades, Einstein will continue his attempts, based on overdetermi-
nation of differential equations. His main aim will be a unified field theory, encompassing
General Relativity, electromagnetism, and Quantum Theory; without success, however.

4 Mathematical Implementation of the Fundamental Principle

The transformation of Born’s quantization principle into a mathematical theory is con-
tained in three publications. The first by Born in 1924 [16] presented the basic concept. It
was in this paper that Born coined the term “Quantenmechanik”. Differential equations of
classical mechanics are transformed into difference equations of “Quantum Mechanics”.

Classically all physical quantities are represented by continuous variables, the underlying
assumption being that all changes in nature occur continuously in space and time. Action-
angle (Ji, wi) variables of the classical Hamilton-Jacobi equations14 provide the starting point.
A particular advantage is that the transformation from usual variables and momenta to action-

12”Daran, dass man die Quanten lösen müsse durch Aufgeben des Kontinuums, glaube ich nicht.....Prinzipiell
könnte ja das Kontinuum aufgegeben werden. Wie soll man aber die relative Bewegung von n Punkten
beschreiben ohne das Kontinuum?....Ich glaube nach wie vor, man muss eine solche Überbestimmung durch
Differentialgleichungen suchen, dass die Lösungen nicht mehr Kontinuumscharakter haben. Aber wie??....

13”Ich glaube nicht, dass die Theorie das Kontinuum wird entbehren können. Es will mir aber nicht gelin-
gen, meiner Lieblingsidee, die Quantenstruktur aus einer Überbestimmung durch Differentialgleichungen zu
verstehen, greifbare Gestalt zu geben.”

14Full acquaintance with the Hamilton-Jacobi formalism was not commonplace then, nor is it today. Born
himself had obtained his doctorate and habilitation in mathematics. His book “Vorlesungen ber Atommechanik,
1. Band [7] provided very detailed discussions of the Hamilton-Jacobi formalism, action-angle variables, and
canonical transformations. Similarly, ref. [1] contains full details of matrix calculus.
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angle variables does not have to be know to define the action variables. Each pair (qi, pi) of
original coordinate qi and canonically conjugated momentum pi is associated with its action
variable Ji, given by

Ji =

∮

pi dqi . (2)

The integral is to be taken at constant energy, not over the classical motion. The action
Ji is the new momentum; the new coordinate wi is the ”angle” around the closed path of
integration. All other physical quantities g become functions of the new momenta and coor-
dinates g = g(Ji, wi). Due to periodicity in angle variables wi, physical quantities g may be
expanded in a Fourier series g =

∑

τ gτ (J)e
2πiwτ , where τ = (τ1, τ2, ...), J = (J1, J2, ...), and

wτ =
∑

iwiτi.

Quantum mechanically, Born’s quantization principle requires that only quantized
action intervals∆Ji = τih (all τi integer) are possible; replacing the classical differentials dJi
by discrete action intervals, the classical differential equations are transformed into quantum
mechanical difference equations. Eq. (1) takes the form ∆Ji(τ) = Ji(n)− Ji(n± τi) = ∓τih.

Two papers by Born and Jordan followed. The June 1925 paper [13] applies the explicit
discretization procedure to the interaction of radiation with atoms. This paper contains the
first fully quantum theoretical treatment of this crucial problem, combining Born’s Quantum
Mechanics with Einstein’s Quantum Optics [8, 9]. Exchange of energy between atoms and
radiation occurs by photon absorption and emission. Einstein’s transition probabilities for
spontaneous photon emission and field induced absorption and emission are obtained. The
September 1925 paper [1] finally arrives at commutation relations and quantum equations of
motion.

4.1 From Born’s Quantization Principle to Commutation Relations

The relation between Born’s quantization principle and commutation relations contains
the key to understanding Quantum Theory. The formal steps are the following. The discussion
is restricted to a single degree of freedom; again, classical differential equations provide the
starting point. Continuous variables p and q represent classical momentum and canonically
conjugated coordinate; J and w the corresponding action and angle. The Fourier expan-
sions for p =

∑

τ pτ (J)e
2πiwτ and q =

∑

τ qτ (J)e
2πiwτ are inserted into the classical definition

J =
∮

p dq. The
∮

is the integral over w from 0 to 1, yielding J = 2πi
∑

τ τqτp−τ . The
derivative with respect to J results in 1

2πi =
∑

τ τ
d
dJ
qτp−τ .

This classical differential equation is transformed into a quantum mechanical difference
equation. The classical differential dJ is replaced by the quantum mechanically allowed dis-
crete action intervals τh and the classical Fourier components (qτ , pτ ) are replaced by “matrix
elements”15.

h

2πi
=

∑

τ

(

q(n+ τ, n)p(n, n+ τ)− q(n, n− τ)p(n− τ, n)

)

. (3)

15In their preceding paper [13], Born and Jordan defined “quantum vectors” (“Quantenvektoren”),
which are equivalent to “matrix elements”.
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The integers n and n± τ characterize different quantum states; the q(n, n± τ) and q(n, n± τ)
represent the changes of coordinate q and canonically conjugated momentum p, caused by
the discontinuous transition from state n to state n± τ .16 Slightly changing the notation, the
general quantization condition takes the form:

h

2πi
=

∑

m

(pnmqmn − qnmpmn). (4)

This is the diagonal element of the commutation relation.17 Born and Jordan then show that
all non diagonal elements vanish. Generalizing to arbitrary numbers of degrees of freedom,
the general commutation relations are obtained.

P Q−Q P =
h

2πi
I, (5)

where I is the unit matrix with elements In,m = δn,m.

General physical quantities g (e.g. q and p) are represented by matrices G with matrix ele-
ments Gn,m. Let state n be represented by the set of integer quantum numbers n = (n1, n2, ...),
state m by m = (m1,m2, ...). Transitions between states n and m correspond to quantized
action intervals ∆Jn,m = ((n1 −m1)h, (n2 −m2)h, ....). Non-diagonal matrix elements Gn,m

are related to discontinuous changes of physical quantity g caused by corresponding transi-
tions. Diagonal matrix elements are interpreted as average values; e.g. Gn,n = gn is related
to the average value of the physical quantity g in the corresponding state. Remark that the
general quantization condition refers to action intervals of transitions, not to any physical
quantity within a quantum state. Quantization is about how things change, not about how
things are. And Born recognized that quantization of action requires that all things change
discontinuously.

In summary: The commutation relation, ”the refined quantization condition, which pro-
vides the basis for all further conclusions”[1]18, represent the mathematical implementation
of the fundamental principle of quantum physics: To each change in nature corresponds
an integer number of quanta of action, independent of the system of reference.

4.2 Quantum Uncertainties

Quantum uncertainties are integral parts of discontinuous quantum physics. Matrix Me-
chanics originated from Born’s conviction that mathematically “exact” values of positions and
times cannot constitute physically relevant notions. The same reasoning applies to all other
physical quantities. The mathematical implementations of discontinuous quantum transitions
contained quantum uncertainties from the beginning. Already in 1924, when Born replaced
classical differential equations by quantum mechanical difference equations [17], quantum

16It is implied that there exists a “ground state” corresponding to n0 = 0. Furthermore, action values J(n)
cannot take negative values (J(n) ≥ 0), which implies that the q(n,m) and p(n,m) containing negative indexes
are defined to vanish.

17Concerning the factor 2πi: There is no profound physical reason; the factor 2πi is due to the representation
of physical quantities by their Fourier coefficients. A mathematical representation of Quantum Theory without
the factor 2πi is perfectly possible.

18”die ”verschärfte Quantenbedingung”, auf der alle weiteren Schlüsse beruhen”.
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uncertainties were part of discretization. While action differences of discontinuous transi-
tions were quantized, all physical quantities within any given quantum state were obtained
from averaging procedures over classical angle variables and discrete action intervals. And
when discontinuous changes of action variables had found their compact form in commutation
relations [1], general uncertainty relations for canonically conjugated quantities followed as
mathematical consequence: The commutation relations require that – for any quantum state
n – physical quantities cannot have perfectly sharp values: Let Qn,n = qn and Pn,n = pn be
the average values of two canonically conjugated quantities in state n; the product of their
mean square deviations has a lower bound imposed by Planck’s quantum of action.

h̄2

4
≤ ((Q2)n,n − q2n) · ((P

2)n,n − p2n) (6)

This inequality is a necessary consequence of Born’s quantization condition; its mathemati-
cal implementation, the commutation relation, contains the inequality (6) as straightforward
mathematical consequence. If ”exact” is understood to have its mathematical significance,
then no physical quantity may take on ”exact” values. A compromise relating the uncertainty
of the quantity considered to the uncertainty of its canonically conjugated partner has to
guarantee that the inequality (6) is fulfilled; perfectly precise and infinitely imprecise values
are excluded. Perfect accuracy of particle position would require infinite momentum uncer-
tainty, implying (P2)n,n = ∞, i.e. infinite energy. Similar conclusions forbid other physical
quantities to take on perfectly precise values; any assumption of exact value of a physical
quantity will invariably lead to conclusions incompatible with the quantum laws themselves.

Similar to position and momentum, time and energy are affected by quantum uncertain-
ties. The universal time of classical physics has no place in discontinuous quantum physics,
where an infinite manifold of time scales may be defined via transition rates between two
states. The only notion of a specific time associated with a particular state a of a quantum
system, is its average lifetime, which is related to the energy uncertainty of state a. A detailed
discussion of time in quantum physics is given in the following chapter.

5 Time in Quantum Physics

5.1 Quantum Equation of Motion

The most important difference between classical and quantum physics concerns the notion
of “time”. Quite generally time is connected with change: Physical objects change their state
as a function of time. The equations governing these changes are the equations of motion. In
accord with the classical assumption of continuity in time and space, the classical equations
of motion are differential equations, i.e. relations between infinitesimally small changes of
physical variables. Relying on commutation relations (eq.5) as general quantization princi-
ple, Born and Jordan transform the differential equations of classical physics into quantum
mechanical difference equations [1]. They describe how general physical quantities g, e.g. p
or q or any other physical quantity g(q, p), change by discontinuous and statistical quantum
transitions

Ġ =
2πi

h
(H G − G H). (7)

The quantum equations of motion do not contain time explicitly; the classical time variable t
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has no place in quantum physics. Ġ is not obtained by usual differentiation of G with respect
to a continuous time variable. Eq.7 is a difference equation, not a differential equation; the
right hand side of eq.7 defines the matrix Ġ. The Hamiltonian H(Q,P) determines which
transitions are allowed and how physical quantities are affected by the discontinuous quantum
transitions.

There remains the question of the physical significance of the matrix Ġ, and, more gener-
ally, what type of limiting procedure should relate the new quantum laws to those of classical
physics. According to Born’s reasoning, discontinuous quantum physics is fundamentally dif-
ferent from supposedly continuous classical physics. While the classical differential equations
suggest fully deterministic behavior “in principle”, discontinuous quantum physics is inher-
ently probabilistic. A remark is in order concerning the so-called classical limit of letting h
go to zero: The limit h = 0 does not exist! Recall that commutation relations result from the
implementation of the principle: “Action variables may only change by integer multiples of
h”. And there is no way that the infinite set of natural numbers may continuously be trans-
formed into a continuum. Similarly, there is no way that inherently statistical behavior may
be transformed into fully deterministic behavior continuously. Classical differential equations
cannot constitute “true” laws of nature, but may only provide approximate descriptions of
averages, which ignore the underlying physical discreteness.

Quite logically, the physical significance of matrix elements Ġn,m is obtained from the
requirement, that classical results must be recovered on average. The probability for a
discontinuous change of physical quantity g, caused by a transition between quantum states
n and m, is shown to be proportional to |Ġn,m|2. Thereby each particular quantum transition
is associated with its particular time scale, defined by “transition probability per unit time”.
The new concept of time, adapted to discontinuous quantum behavior, is contained in an
infinite manifold of transition rates.

Compare to the classical concept of time: A clock consisting of some macroscopic oscillator
(e.g. a specific vibration mode of a quartz crystal; or an electromagnetic mode in a microwave
cavity) defines time via the number of oscillations per unit time. The discrete counting process
used to define classical time necessarily introduces finite (classical) uncertainties. As usual in
classical physics, it is implicitly accepted that – in practice – these finite uncertainties cannot
be avoided, but it is assumed that – in principle – they may be reduced to be infinitesimally
small. Although not directly relevant for individual quantum systems, the classical time vari-
able defined by clocks may be taken as external parameter, serving as scale for the transition
rates of discontinuous quantum behavior. It has to be kept in mind, however, that classical
time defined by clocks cannot be defined exactly; quantum uncertainties pose a lower limit
to all measurements. Quantization of action guarantees that all physical quantities (time,
energy, position, momentum, etc....) are affected by quantum uncertainties.

5.2 General Remarks: Time as Operator and Time as External Parameter

In §22 of their book “Elementary Quantum Mechanics” (“Elementare Quantenmechanik”)
[18], Born and Jordan distinguish between time as external parameter, defined by clocks, on
one side, and the concept of time relevant for the discontinuous evolution of individual quan-
tum system on the other:

11



“The description of a physical system by a time-dependent Hamilton function, where time
is used as external parameter, cannot constitute an exact representation of its physical proper-
ties, but only an approximate calculation procedure, which contains fundamental omissions.”19

For closed systems, the classical Hamilton-Jacobi formalism considers energy and time to
be canonically conjugated; the negative energy takes on the role of canonical “momentum”,
time its canonically conjugated “variable”. Born and Jordan conclude: Quantum theoretically
for a closed quantum system, time t is not commuting with energy W :
”Classical theory teaches that energy H = W and time are canonically conjugated in closed
systems. In analogous and corresponding implementation in Quantum Mechanics the W, t
have to be represented by certain non commuting symbols, which are governed by the rules
analogous to the canonical commutation relations of p, q”. 20

Similarly, for two interacting quantum system with conserved total energy, time is not com-
muting with energy:
”Time is not commuting with energy of these systems (canonically conjugate to it).”21

For open systems, however, coupled to surroundings, such that back coupling effects to the
surroundings are weak and can be neglected, an external time variable t may be admissible
as parameter.
”The energy of the partial system may be considered to be approximately commuting with the
total energy. Therefore the use of t as parameter may be justified.” 22

Further details are contained in §61:
”Already in §22 it was pointed out, that the time canonically conjugate to the energy of a closed
system cannot be represented by a real parameter, but itself constitutes a quantity, which does
not commute with other measurable quantities of this system. As far as the time so defined is
concerned, it is generally false to state that any other quantity A(p, q) is measured at a specific
point in time.”23

Again the distinction to open systems with negligibly weak back coupling to an external sys-
tem (a ”clock”) is stressed; the variable t defined by the external clock may be used as external
parameter.

19“Die Beschreibung eines physikalischen Systems durvch eine zeitabhängige Hamiltonfunktion, in welcher
die Zeit als Zahlparameter aufgefasst wird, kann nicht eine exakte Darstellung der physikalischen Verhältnisse
geben, sondern ist lediglich als ein approximatives Rechenverfahren zu betrachten, das grundsätzliche Ver-
nachlässigungen in sich schliesst.”

20”Die klassische Theorie lehrt nun, dass bei einem abgeschlossenen Systeme die Energie H = W und die Zeit
t kanonisch konjugiert zueinander sind. Bei sinngemässer korrespondenzmässiger übertragung in die Quanten-
mechanik müssen also die W, t analog den p, q durch gewisse nichtkommutative Rechensymbole dargestellt
werden und Rechenregeln unterworfen sein, die den kanonischen Vertauschungsregeln der p, q analog sind”.

21”Dann ist die Zeit mit der Gesamtenergie dieser Systeme nicht vertauschbar (kanonosch konjugiert zu
ihr)”.

22”die Energie des Teilsystems [darf ] näherungsweise als mit der zur Gesamtenergie kanonisch konjugierten
Zeit vertauschbar angenommen werden. Dadurch kann der Gebrauch von t als Zahlparameter gerechtfertigt
werden.”

23”Es ist schon in §22 darauf hingewiesen worden, dass die zur Energie eines abgeschlossenen Systems
kanonisch konjugierte Zeit nicht durch einen Zahlparameter dargestellt werden kann, sondern selbst eine mit
den übrigen messbaren Grössen an ’diesem System im allgemeinen nicht vertauschbare Grösse ist. Deshalb
kann man, mit Bezug auf die so definierte Zeit, im allgemeinen auch nicht davon sprechen, dass irgendeine
Grösse A (p, q) in einem bestimmten Zeitpunkt gemessen wird.”
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”This time t may be considered to be defined by a system (a ”clock”), not coupled or very
weakly coupled to the system considered.”24

5.3 Time as Operator

First several preliminary remarks about the notation used below. The symbols t̂, Ê, r̂, p̂
are used for time-, energy-, position-, and momentum-operators. Similarly, q̂, p̂, ĝ indi-
cate operators. The operators might be differential or integral operators. Latin or Greek
letters will indicate mathematical variables (not to be mistaken for physical notions), e.g.
t, E, r, p, denote continuous mathematical variables, representing time-, energy-, position-,
and momentum-operators.

The first representation of energy and time by non commuting symbols is contained in
the paper by Max Born and Norbert Wiener [19]. After achieving his original aim of a
discretized Quantum Mechanics, Born quickly realized that field theoretical representations
are easier to handle mathematically. Even slightly before Schrödinger, Born and Wiener
replaced the discrete mathematical forms of matrix mechanics by field theoretical methods.
Matrices are replaced by integral and/or differential operators, and different quantum states
are represented by functions of continuous variables. Let us use the symbolic notation Gmn =
(m|ĝ|n); a general physical quantity g is represented by the operator ĝ. Operators representing
canonically conjugated quantities obey the commutation relations p̂q̂ − q̂p̂ = h̄/i. Similarly,
the quantum equations of motion takes the form ˙̂g = 2πi

h
(Ĥ ĝ− ĝ Ĥ). For closed systems with

conserved total energy, time and energy operators fulfill the commutation relation

Êt̂− t̂Ê = −
h̄

i
. (8)

The corresponding time-energy uncertainty relation takes the form

h̄2

4
≤ ((̂t2)n − τ2n) · ((Ê

2)n − ǫ2n), (9)

where τn = (n|̂t|n) and ǫn = (n|Ê|n) are average lifetime and energy of state n. (̂t2)n = (n|̂t2|n)
and (Ê2)n = (n|Ê2|n) are average values of the corresponding squared operators. This relation
is independent on the special choice taken how to represent time and energy operators. It is
common practice to use the time-energy uncertainty relation to define average lifetimes of
very short lived particles, e.g. in high energy experiments, by measuring energy uncertainties.
Other examples are very small lifetimes of unstable nuclei in heavy ion scattering. Natural
linewidths in atomic and molecular spectroscopy are further examples.

Born and Wiener chose the representation t̂ = t; Ê = − h̄
i
d
dt
. A few weeks later, the

representations r̂ = r and p̂ = h̄
i
∇r were introduced in Schrödinger’s “stationary” equation

[2]. Let us call this the “time-position representation”, which represents quantum states by
normalized functions ψ(t, r) of the continuous variables t, r.

A note of caution is in order: The variables t and r were introduced as mathematical
representation of operators t̂ and r̂. Instead of t and r , we might choose any other sym-

24”Diese Zeit t [kann man] als durch ein mit dem betrachteten System gar nicht oder ganz schwach gekoppeltes
anderes System (eine ”Uhr”) definiert auffassen.”
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bols; all physically relevant quantities have to be independent of the particular choice taken.
In particular, the t-dependence of the function ψ(t, r) must not be interpreted to represent
the continuous evolution as a function of time of an individual physical system. ψ(t, r) is
nothing more than a mathematical tool, useful to perform calculations of matrix elements.
Physical relevance is contained in averages and probabilities obtained from matrix elements.25

In the chosen representation, the equation of motion ˙̂g = 2πi
h
(Ĥ ĝ − ĝ Ĥ) is a differential

equation with respect to t. Formal integration yields:

ĝ(t) = e
i
h̄
Ĥt ĝ e−

i
h̄
Ĥt. (10)

But again, the note of caution already mentioned above applies: Do not mistake the mathe-
matical variable t to indicate continuous physical behavior. The variable t has been introduced
as representation of the time operator. Mathematically, the commutation relations may be
satisfied by infinitely many different representations; no physically relevant and observable
quantity may depend on a specific representation. All of physics is contained in probabilities
and averages obtained from matrix elements. And all representations fulfilling the commuta-
tion relations yield identical matrix elements.

5.4 Energy-Momentum Representation

Section 4.1 showed that the requirement of discontinuous action intervals resulted in com-
mutation relations. The following example demonstrates that the reverse conclusion holds
as well; commutation relations indeed imply discontinuous quantum behavior, resulting from
discontinuous action intervals. The essential differences between classical and quantum be-
havior are particularly perceptible, if the interactions between two quantum systems become
small, such that lowest order perturbation theory is applicable. Classically, small interactions
cause small changes in physical quantities; quantum mechanically even small interactions may
cause large changes in physical quantities, the corresponding probabilities tend to vanish for
vanishing interactions.

As example, I discuss scattering processes of particles by crystals.26 Classically, the
interaction between particle and crystal is taken to be a time dependent potential V (r, t),
where the t dependence describes the classical crystal dynamics. Fourier transformation
V (r, t) =

∫

dω d3k Ṽ (ω,k) ei(ωt−kr) will be helpful in the following. For the quantum
mechanical treatment, I consider the combined system of particle and crystal to constitute
a closed system. Following the Born-Jordan perspective, all physical quantities – energy,
time, momentum, position – are represented by operators. The commutation relations for

25The standard interpretation of Schrödinger’s wave function ψ(t, r) is different: The variable t is inter-
preted as classical time variable, and, contrary to Born’s understanding, ψ(t,r) is interpreted to describe the
continuous evolution with time of an individual physical system. I restate Born’s understanding: If t is inter-
preted as classical time defined by clocks, then t is external parameter and the remark above applies: “The
description of a physical system.....cannot constitute an exact representation of its physical properties, but only
an approximate calculation procedure, which contains fundamental omissions.” The section “Time as external
parameter” discusses this point in detail.

26Scattering processes of particles by atoms played a crucial role in Born’s statistical interpretation of the
wave function [20] Assuming the atomic spectrum to be given, he used wave functions to compute the relevant
matrix elements.
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time-energy and position-momentum may equally be satisfied by the “energy-momentum rep-
resentation”27

Ê = E; t̂ =
h̄

i

d

dE
; p̂ = p; r̂ = −

h̄

i
∇p. (11)

Replacing the classical variables r and t by the operators r̂ = − h̄
i
∇p and t̂ = h̄

i
d
dE

, the

classical interaction V (r, t) =
∫

dω d3k Ṽ (ω,k) ei(ωt−kr) becomes the interaction operator

V̂ =
∫

dωd3k Ṽ (ω,k) eh̄(ω
d
dE

−k∇p). The particle is taken to be structureless and without
internal dynamics. In the chosen representation, the particle state may be represented by the
function f(E,p). The interaction operator V̂ is applied as perturbation to the uncoupled free
particle state f(E,p). In lowest order we obtain

∫

dωd3k Ṽ (ω,k) eh̄(ω
d
dE

−k∇p) f(E,p) =

∫

dωd3k Ṽ (ω,k) f(E + h̄ω,p+ h̄k). (12)

The physical interpretation is obtained from the quantum equation of motion: The Fourier
component Ṽ (ω,k) may cause a discontinuous energy transfer h̄ω and/or momentum transfer
h̄k. The transition probability is proportional to |Ṽ (ω,k)|2 [20]. For ω 6= 0, the sign used in
the Fourier transform is chosen such that positive ω correspond to energy transfer from the
crystal to the particle (e.g. by absorption of a phonon); negative ω to energy transfer from
the particle to the crystal (e.g. creating a lattice excitation).

The classical definition of the action variables (eq.(2)) allows to relate the discontinuous
energy and momentum transfers to their respective change in action variables ∆JE and ∆Jp.
∆JE resulting from the Fourier component Ṽ (ω,k) is given by the product of periodicity time
tω = 2π

|ω| and energy transfer ∆E = h̄ω. The discontinuous momentum transfer produced by

the Fourier component Ṽ (ω,k) results from discrete translation symmetry in direction the
momentum transfer ∆p = h̄k. Translation in direction of ∆p by the length 2π

|k| leaves the

Fourier component Ṽ (ω,k) invariant. The corresponding ∆Jp is given by the product of
periodicity vector k

|k|
2π
|k| and momentum transfer ∆p = h̄k. The change in action variables

due to any one of the various Fourier component Ṽ (ω,k) is equal to the smallest value allowed
by the fundamental laws, Planck’s quantum of action h.

∆JE = ∆E
2π

|ω|
= h; ∆Jp = |∆p|

2π

|k|
= h. (13)

Time and energy have been represented by non-commuting symbols, implying that total
energy of particle and crystal combined is conserved. Implicitly, the crystal is treated quantum
theoretically, too. A discrete transition of the particle changing its energy and momentum
has to be coupled to a discrete transition in the crystal. This fact is used experimentally, to
study the elementary excitations of crystals, e.g. lattice excitations (phonons) or magnetic
excitations (magnons).

27The “energy representation” was introduced by the present author in the appendix of [5]. The energy
operator is represented by the continuous variable E and the time operator by the derivative with respect to
E.
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These results were obtained in lowest order perturbation theory, which is particu-
larly suited to demonstrate the differences between quantum and classical physics. Classically,
lowest oder is adequate for infinitesimally small perturbations causing equally infinitesimally
small changes in the perturbed system. For vanishing strength of the interaction, the classical
response tends towards zero continuously. The quantization condition, implemented by the
commutation relations, predicts very different results. Small, even extremely weak pertur-
bations may cause large and discontinuous changes of physical quantities; the corresponding
probabilities tend towards zero for vanishing strength of the perturbation. Furthermore, if
the interaction is weak enough, such that lowest order effects only have to be considered, all
types of geometries may be treated. The total scattering probability is obtained from the sum
over the contributions of the various Fourier coefficients.

Elastic transitions (∆E = 0 and ∆JE = 0), i.e. the scattering contributions due to
Fourier components Ṽ (ω = 0,k), are of particular interest for diffraction phenomena. Sys-
tems of discrete translational symmetries produce particularly large scattering probabilities
for special momentum transfers ∆pi = h̄Qi, the “Bragg peaks”. In crystalline materials
a large fraction of the total elastic scattering intensity is concentrated in Bragg scattering,
easily distinguishable from the usually structureless background of inelastic processes. The
special momentum transfers contributing to Bragg scattering are representative of transla-
tional symmetries; translation in direction of any one of the ∆pi by the corresponding length
2π
|Qi|

represents a crystalline symmetry operation. Crystallography relies on this correspon-
dence; identification of a large enough number of Bragg peaks permits the identification of
the crystal structure.

Remark that the occurrence of Bragg peaks does not rely on any intrinsic wave property
of the scattered particles. The special momentum transfers ∆pi in Bragg scattering are due
to the fundamental quantization condition ∆Jp = |∆pi|

2π
|Qi|

= h, not to any alleged wave
property of the scattered particles.

5.5 Time as External Parameter, Time Dependent Perturbation Theory

Let us recall Born’s remarks, concerning the use of explicitly time dependent Hamilto-
nians: “The description of a physical system by a time-dependent Hamilton function, where
time is used as external parameter, cannot constitute an exact representation of its physical
properties, but only an approximate calculation procedure, which contains fundamental omis-
sions.”28[18].

“Time-dependent” perturbation theory is a standard example, where the time variable t
must be treated as external parameter. An explicitly time dependent perturbation V (t) =
∫

dωṼ (ω)eiωt is applied to a quantum system. Just as in the preceding section, lowest order
effects only are considered. At t = 0 the system is taken to be in the state φi of energy ǫi;
under the influence of the time dependent external perturbation V (t), the time dependent
Schrödinger predicts φi to develop into ψ(t) =

∑

ν cν(t)φν . Typical textbooks identify |cν(t)|
2

28“Die Beschreibung eines physikalischen Systems durch eine zeitabhängige Hamiltonfunktion, in welcher
die Zeit als Zahlparameter aufgefasst wird, kann nicht eine exakte Darstellung der physikalischen Verhältnisse
geben, sondern ist lediglich als ein approximatives Rechenverfahren zu betrachten, das grundsätzliche Ver-
nachlässigungen in sich schliesst.”
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as “probability to find the system at time t in the state φν”. Detailed calculations are text-
book material, I directly address the physically relevant result, “Fermi’s Golden Rule”: In the
limit of large t, the transition probability from state φi of energy ǫi to the state φf of energy
ǫf is proportional to |Ṽ (ω)|2δ(ǫf −ǫi+ h̄ω) t. The limit of large t has led to the delta-function,
guaranteeing energy conservation. The transition rates |Ṽ (ω)|2δ(ǫf − ǫi + h̄ω) reproduce the
results obtained by the (much simpler) method of the preceding section.

Only these transition rates are physically relevant and experimentally measurable. Typi-
cal textbook claims, that ψ(t) =

∑

ν cν(t)φν describes the temporal evolution of the state of
an individual quantum system for arbitrary values of “time” t, are incorrect. It impossible in
principle to back up these claims experimentally; time-energy quantum uncertainties pose a
lower limit to time and energy accuracies.

Although the t-dependent wave function does not describe the continuous evolution of an
individual physical system, Ψ(t) does constitute an approximate description, provided that
the variable t is interpreted as external parameter, defined by a classical clock, and Ψ(t) is
interpreted as representation of an ensemble, i.e. a very large number of equivalent quantum
systems. At t = 0, the “system” to be described by Ψ(t = 0) consists of a macroscopically
large number N of equally prepared quantum systems in the initial state φi. According to the
time dependent Schrödinger equation, Ψ(t = 0) develops into Ψ(t) =

∑

ν cν(t)φν . Applying
the Born(-Einstein) ensemble interpretation (described extensively in the following section),
|cν(t)|

2 = nν(t) for ν 6= i then is the number of individual quantum system having made a
transition from the intial state φi to the state φν , where

∑

ν nν(t) = N . To lowest order in
1
N

∑

ν 6=i nν(t), the result given by Fermi’s golden rule reproduces the transition rate of Born’s
statistical interpretation, described extensively in the following section.

5.6 The Born(-Einstein) Ensemble Interpretation

When Born derived the statistical interpretation of the wave function in 1926 [20], their
was no time variable t involved. He obtained the transition probabilities directly from matrix
elements, which he determined using time independent perturbation theory. Nevertheless, the
paper [20] indicates how ψ(t, r) may constitute an approximate procedure, provided that
the variable t is interpreted as external parameter, and ψ(t, r) is not interpreted as represen-
tation of a single quantum system, but of an ensemble, i.e. a very large number of equivalent
quantum systems. The name of Einstein is included in parenthesis in the title above, because
Einstein adopted the ensemble interpretation of ψ(t) [21] in exactly the sense intended by
Born.

Born’s statistical interpretation [20] consists of two papers, the ”Preliminary Announce-
ment” of June 1926 was followed by the extended version one month later. The subject
of the two papers is indicated by their title: ”Quantum Mechanics of Collision Processes”
(”Quantenmechanik der Stoßvorgänge”): Particles (e.g. electrons) are scattered by atoms.
Consistent with the basic postulate of discontinuous quantum physics, there is no explicit
time variable. The aim consists in calculation of transition matrix elements, which, in turn,
will determine transition probabilities. The initial state consist of separate quantum systems,
particles and atoms, far apart from each other and noninteracting. Particles and atoms col-
lide; asymptotically in the final state, particles and atoms again are far apart from each other
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and noninteracting29.

Born’s preliminary scattering paper [20] describes the collision of a single electron with
an atom. The premise is that”before, as well as after, the collision, when the electron is
far away and the coupling small, a particular state of the atom and a particular, rectilinear-
uniform movement of the electron has to be definable.” 30 Mathematically, the task is reduced
to determine the asymptotic behavior produced by the collision. Born distinguishes between
”physical” (or ”real”) states of electrons and atoms and their mathematical representations.
Particles are represented by plain wave functions of wave vector k. Physical significance (or
”reality”) is attributed to electron momenta p = h̄k and atom energies ǫ only. Wave func-
tions serve as mathematical tools to calculate transition probabilities from real initial states
to real final states. The initial noninteracting state is represented in terms of product wave
functions Ψi = ψki

ψm of free electron ψki
with momentum h̄ki and free atom ψm with en-

ergy ǫm. The transition probabilities from initial to various final states caused by the (weak)
electron-atom interaction are calculated. The first short paper does not contain mathematical
details, but simply states the essential result and Born’s interpretation of its physical signif-
icance. Asymptotically, after the collision has taken place, the total Ψ-function takes the form

Ψs =
∑

n

∫

d2Ωkf
Φ(kim,kfn) ψkf

ψn. (14)

The integral over d2Ωkf
is over the solid angle of outgoing momenta h̄kf . Energy conservation

(ǫm − ǫn = h̄2|kf |
2/2me - h̄2|ki|

2/2me) determines the absolute value |kf |.

The wave function Ψs consists of a superposition of many product wave functions ψkf
ψn.

Born concludes: “We do not get an answer to the question, “what is the state after the col-
lision?”, but only to the question, “how probable is a given result of the collision?”... based
on the principles of our Quantum Mechanics there exists no quantity, which determines the
result of the collision for the individual elementary process.”31 The physical significance of
the superposition Ψs =

∑

n

∫

d2Ωkf
Φ(kim,kfn) ψkf

ψn is reduced to:
The transition probability from initial state represented by ψki

ψm (electron with momen-
tum h̄ki and atom with energy ǫm) to any one of the possible final states represented by
ψkf

ψn (electron momentum h̄kf and atom energy ǫn) is proportional to the absolute square
|Φ(kim,kfn)|

2.

The same reasoning is adopted for light scattering, which, based on Einstein’s concept of

29This experimental situation corresponds precisely to the configuration addressed in the EPR-(Einstein-
Podolsky-Rosen) paper of 1935 [22], which stimulated Schrödinger’s papers about entanglement and
”Schrödinger’s Cat”[23]. The ”EPR”- paper actually was not written by Einstein, but by Podolsky and does
not constitute Einstein’s own views properly. Einstein’s own opinion on this matter is contained in Einstein’s
review ”Physics and Reality” of 1936 [21]. A detailed account is given by Arthur Fine in ”The Shaky Game,
Einstein’s Realism and the Quantum Theory” [24]. Further details are given in the present author’s book [5].

30“sowohl vor als auch nach dem Stoße, wenn das Elektron weit genug entfernt und die Koppelung klein ist,
[muss] ein bestimmter Zustand des Atoms und eine bestimmte, geradlinig-gleichförmige Bewegung des Elektrons
definierbar sein.”

31Man bekommt keine Antwort auf die Frage, “wie ist der Zustand nach dem Zusammenstoße”, sondern
nur auf die Frage, “wie wahrseheinlieh ist ein vorgegebener Effekt des Zusammenstoßes”.....Vom Standpunkt
unserer Quantenmechanik gibt es keine Größe, die im Einzelfalle den Effekt eines Stoßes kausal festlegt.”
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photons, should be understood as particle scattering:
”I further believe that the problem of absorption and emission of light must also be treated in
a completely analogous way...... in accord with the concept of light quanta.”

The extended version published one month later replaces the rather academic problem of
colliding one electron with one atom by the typical physical situation realized in the labora-
tory: A stationary current of particles (electrons) is produced and brought into collision with
a gas consisting of a large number of atoms. Again wave functions are used as mathemat-
ical tools to calculate the transition probabilities. Born specifies his general interpretation
of Schrödinger’s ψ-functions. He refers to Einstein’s expression of ”ghost field” (”Gespen-
sterfeld”) [25], introduced in the context of light scattering. Whereas energy and momentum
are carried by particles (i.e. photons), the fictitious ghost field describes the probability
distribution over large numbers of single particle scattering events. Schrödinger’s wave func-
tions are similar ghost fields without direct physical significance. Momentum and energy are
transferred in such a way that “particles (electrons) actually fly about (als wenn Korpuskeln
(Elektronen) tatsächlich (= actually, really, in fact) herumfliegen”). The flight path of the
particles is determined only in so far, as restricted by energy and momentum conservation;
apart from that, the probability for a particular path is governed by the function ψ. Particle
dynamics are determined by probability laws.”32

The interpretation of the ghost field ψ is adapted to the physical problem, i.e. a large
number (or ”ensemble”) of atoms and particles. The representation of an ensemble of non-
interacting atoms is given in terms of the eigenfunctions ψn(q) with eigenvalues ǫn of the
stationary Schrödinger equation. Since the system of functions ψn(q) is complete, any func-
tion f(q) may be expanded in terms of the eigenfunctions f(q) =

∑

n cnψn(q). Born asks
the question: If the normalized functions ψn(q) constitute representations of atomic states of
energy ǫn, what type of physical system might be associated with a general superposition?
Born’s conclusion is the following: The general superposition f(q) =

∑

n cnψn(q) is related to
the ”probability for the occurrence of the various states in a mixture of equal and uncoupled
atoms. The completeness relation

∫

dq |f(q)|2 =
∑

n |cn|
2 leads to regard this integral as the

number of the atoms..... |cn|
2 denotes the abundance of the state n and the total number is

composed of the sum over the various contributions” 33.
In short: f(q) =

∑

n cnψn(q) is not to be associated with one individual atom but with a
mixture (”ensemble”) of many atoms and |cn|

2 is to be interpreted as the number of atoms
in the state n. 34

The equivalent reasoning is applied to ensembles of free particles. Any general function
g(r) may be expanded in terms of free particle eigenfunctions ψk (i.e. a simple Fourier ex-
pansion). But again this general superposition will, in general, not represent an acceptable
physical state of a single individual particle. For the physical problem under consideration,

32“Die Bahnen dieser Korpuskeln sind nur so weit bestimmt, als Energie und Impulssatz sie einschränken; im
übrigen wird für das Einschlagen einer bestimmten Bahn nur eine Wahrscheinlichkeit durch die Werteverteilung
der Funktion ψ bestimmt. Die Bewegung der Partikeln folgt Wahrscheinlichkeitsgesetzen.”

33”Wahrscheinlichkeit dafür, dass in einem Haufen gleicher, nicht gekoppelter Atome die Zustände in einer
bestimmten Häufigkeit vorkommen. Die Vollständigkeitsrelation

∫

dq |f(q)|2 =
∑

n
|cn|

2 führt dazu, dieses
Integral als die Anzahl der Atome anzusehen.....|c(n)|2| bedeutet die Häufigkeit des Zustandes n, und die gesamte
Anzahl setzt sich aus diesen Anteilen additiv zusammen.”

34In 1936 Einstein will refer to this example to illustrate his ”ensemble interpretation” [5].
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i.e. an ensemble of free particles: The general superposition g(r) =
∑

k ckψk is related to the
probability for the occurrence of various free particle states of momentum h̄k in a mixture
(ensemble). The absolute square of the expansion coefficients |ck|

2 is to be interpreted as
providing the abundance of particles in states of momentum h̄k.

The problem to be solved is specified as follows:
”For the processes considered, the paths of the particles before and after the collision are
asymptotically rectilinear. For a very long time (in comparison with the actual collision pro-
cess) the particles are in practically free states. In agreement with the experimental situation,
we are led to the following approach: Let the distribution function |c(k)|2 for the asymptotic
paths before the collision be known; are we able to calculate the distribution function after the
collision? Of course, we are considering a stationary current of particles”.35

In lowest order, the coefficients Φ(kim,kfn), obtained in the preliminary communication
are shown to be proportional to the matrix elements (ψki

ψm|Ve.a|ψkf
ψn), where Ve.a is the

electron-atom interaction. The transition probabilities from initial states Ψi = ψki
ψm to final

states Ψf = ψkf
ψn are proportional to the absolute squares |(ψki

ψm|Ve.a|ψkf
ψn)|

2.36

To summarize: Born’s statistical interpretation is about ”transition probabilities”
of discontinuous and statistical transitions; their probabilities are proportional to absolute
squares of off-diagonal matrix elements. If Wave Mechanics, in addition to Matrix Mechanics,
introduces functions ψ(r, t), these wave functions do not contain any additional physics. In
particular, they do not describe the continuous evolution in space and time of an individual
quantum system. Their usefulness is limited to mathematical tools for computation of matrix
elements. No additional physical reality is to be associated with wave functions; they are
nothing more than ghost fields, or phantoms of the imagination.

6 The Copenhagen Interpretation

6.1 The Doctrine of Classical Concepts

The main architects of the Copenhagen interpretation of Quantum Mechanics are Werner
Heisenberg and Niels Bohr. Bohr was the spiritual leader; although he did not contribute
to the mathematical development of the new quantum laws, his supposedly deeper insight
determined the guiding line for his young collaborators. The formal basis for the Copen-
hagen interpretation of Quantum Theory was provided in two papers by Heisenberg, the
“re-interpretation paper” [4] of 1925 and the “indeterminacy paper” [26] of 1927. Bohr’s
review of 1928 [27] (published simultaneously in Naturwissenschaften and Nature) provided
the final touches. Bohr’s imperative assertion, that classical concepts have to be maintained
to describe quantum physics, defined the framework. His old Quantum Theory had relied
on classical concepts; continuity of all physical processes in Newtonian space and time were

35Bei diesen Vorgängen hat jede Bewegung vor und nach dem Stosse eine geradlinige Asymptote. Die Teilchen
befinden sich also sehr lange (im Vergleich zur eigentlichen Stossdauer) vor und nach dem Stosse in praktisch
freiem Zustande. Man kommt daher in Übereinstimmung mit der experimentellen Problemstellung zu folgender
Auffassung: Für die asymptotische Bewegung vor dem Stosse sei die Verteilungsfunktion |c(k)|2 bekannt; kann
man daraus die Verteilungsfunktion nach dem Stosse berechnen ? Dabei ist natürlich hier von einem stationären
Teilchenstrom die Rede.”

36 Higher order contributions are contained in what is usually call the “Born series”.
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central elements. Atoms were viewed as miniature solar systems, electrons in stationary states
of quantized energies ǫn performing continuous orbits around nuclei. Classical equations of
motion provided the energies. When the new quantum laws were published by Born and
Jordan [1], Bohr’s efforts concentrated on constructing an interpretation in accord with the
classical concepts of his own old Quantum Theory.

6.2 Heisenberg’s Re-Interpretation

The origin of Matrix Mechanics was attributed to Heisenberg’s paper “Quantum Theo-
retical Re-Interpretation of Kinematic and Mechanical Relations” of July 1925 [4]. When
Heisenberg wrote the paper, he had spent most of the preceding year in Copenhagen, and he
was firmly attached to the classical concepts of Bohr’s old Quantum Theory. Bohr’s cardinal
error was the rejection of Einstein’s quanta of radiation; Bohr maintained that radiation had
to retain its classical character. But if atoms could emit continuous radiation, then there
had to be something oscillating inside the atoms, providing the required frequencies. This
role was attributed to “virtual oscillators”; each spectral line of frequency ν was associated
with its corresponding virtual oscillator. Bohr’s frequency condition hν = ǫn − ǫm was based
on this assumption. Heisenberg intended to provide a new kinematic description of physical
quantities for this physical picture.

In fact, what Heisenberg really re-interpreted was Born’s preceding papers [17] and [13].
The June 1925 paper by Born and Jordan [13] had applied Born’s concept of discontinuous
quantum physics [17] to the interaction of atoms with radiation; emission and absorption of
photons were combined with discontinuous changes of atomic properties. Heisenberg, after his
return from Copenhagen, witnessed the final stages of its genesis. His own re-interpretation
paper of July 1925 [4] picked up the same subject, but instead of following Born’s line of
thought, he twisted Born’s intentions to signify the contrary. He applied a slightly modified
Bohr-Sommerfeld quantization procedure to Bohr’s virtual oscillators, which supposedly were
responsible for the emission of continuous radiation. The virtual oscillator amplitudes – in
Heisenberg’s opinion – determined the intensities of the corresponding spectral lines.

The essential differences and similarities between the Born-Jordan paper of June 1925 [13]
and Heisenberg’s paper of the July [4] are:

I. Born-Jordan: All elementary dynamics is discontinuous; there are no continuous orbits
and virtual oscillators; radiation is quantized; the interaction of atoms and radiation occurs
by discontinuous emission and absorption of photons.
Heisenberg’s re-interpretation: All elementary processes are continuous in space and
time; radiation is classical; the emission of continuous radiation is due to virtual oscillators of
the corresponding frequency.

II. Born-Jordan determine Einstein’s probabilities for spontaneous emission and field in-
duced emission and absorption of photons. The probabilities determine the intensities of
spectral lines.
Heisenberg’s re-interpretation: He relies on Bohr-Sommerfeld quantization to determine
quantized energies of virtual oscillators. This, in his opinion, constitutes the “integration of
the equations of motion”. Virtual oscillator amplitudes determine intensities of spectral lines.
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III. Born-Jordan represent the atomic dipole moment by “quantum vectors” A(n, n − τ),
which are identical to the future “matrix elements”. Discontinuous action intervals τh corre-
spond to emission of photons of energy ǫphoton = ǫn − ǫn−τ .
Heisenberg’s re-interpretation: He adopts and re-interprets Born-Jordan’s quantum vec-
torsA(n, n−τ); he restores continuity in time by a multiplicative phase factor e2πi ν(n,n−τ)t, de-
vised to fulfill Bohr’s frequency condition hν(n, n−τ) = ǫn−ǫn−τ . TheA(n, n−τ)e2πi ν(n,n−τ)t

are interpreted as representations of position coordinates of virtual oscillators.

IV. Born-Jordan motivate the elimination of continuous variables by ”The true laws of
nature are determined only by such quantities, which are observable in principle”37. Nature
is discontinuous at the elementary quantum scales; continuous variables loose their physical
significance.
Heisenberg’s re-interpretation: He adopts the Born-Jordan principle of retaining only
observable quantities, but re-interprets the reason for doing so. Although he still maintains
that continuous electronic orbits and virtual oscillators constitute the underlying subatomic
physics, he declares the subatomic dynamics to be “invisible in principle”. This “invisibility
in principle” of subatomic orbits and oscillators is presented as ad hoc postulate, without
further justification.

Heisenberg himself was not satisfied with this ad hoc postulate, and during the following
years he searched for supporting arguments. The “indeterminacy paper” of March 1927 [26]
contains his “explanation”.

6.3 The “Measurement Problem”

When Born and Jordan published the commutation relations in September 1925 [1], nei-
ther Heisenberg nor Bohr recognized their physical significance. Heisenberg remained fully
attached to the classical concepts of Bohr’s old Quantum Theory; continuity in space-time
of all physical processes constituted its basic assumption, and exact values of all physical
quantities at all times were taken for granted. But how could the commutation relations
be reconciled with classical concepts? In particular, the apparent incompatibility of precise
values of position and momentum called for an explanation.

Heisenberg’s “indeterminacy paper” of 1927 [26] seemingly provided the answer. In order
to “explain” the physical content of commutation relations, he invented the “measurement
problem”: The measurement of a physical quantity q should necessarily cause unavoidable
and uncontrollable disturbances of its canonically conjugated partner p. For example: Both
particle position and momentum have exact values at all times; these exact values may be
determined separately. But while the position of a particle may be determined exactly (and
thereby known), the act of position measurement necessarily disturbs its momentum, thereby
precluding its simultaneous determination (or knowledge). The accent here is on “neces-
sarily” disturbs, and on “simultaneous determination”; only the simultaneous de-
termination of canonically conjugated quantities should be prohibited by unavoidable and

37”Ein Grundsatz von grosser Tragweite und Fruchtbarkeit besagt, dass in die wahren Naturgesetze nur solche
Größen eingehen, die prinziplell beobachtbar, feststellbar sind.”
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uncontrollable disturbances produced by measurements. This reasoning was extended to all
other physical quantities; Heisenberg remained convinced that
“All notions, which are used for the description of mechanical systems in classical theory, may
be defined exactly also for atomic processes, in analogy to the classical notions”.38

While Born’s discontinuous quantum physics contains quantum uncertainties of all physical
quantities as constitutive elements, Heisenberg’s interpretation replaces quantum uncertain-
ties by indeterminacies resulting from experimental disturbances.

Heisenberg’s “explanation” of the physical content of commutation relations is fundamen-
tally wrong. Of course, many real measurements do disturb the system to be measured; that
is true for many experiments in classical physics and remains so for quantum physics. But
Heisenberg’s claim, that a measurement necessarily disturbs the system to be measured, is
false. Particle position measurements of atoms in crystalline materials provide the crucial
example. Diffraction experiments are the standard method. Photons or neutrons or electrons
are scattered off the crystal, the observed Bragg peaks provide the information necessary to
determine the atomic positions. Bragg scattering processes are purely elastic; they not only
leave the atomic positions unchanged, they also do not change their momenta. The momen-
tum transfer from the scattered particles (e.g. neutrons or photons) to the crystal is absorbed
by the rigid crystal, while the momenta of individual atoms bound in the crystal remain un-
changed. Of course, inelastic scattering processes changing atomic momenta are possible, too;
they are part of background contributions in addition to Bragg peaks39.

Quantum uncertainties, not indeterminacies, are constitutive elements of quantum physics.
Heisenberg’s fundamental error invalidates all further conclusions, which he invokes to justify
the retention of classical concepts.

In order to quantify the indeterminacies, Heisenberg attributes dual properties, i. e.
particle and wave character, to individual photons and other particles; wavelength λ and mo-
mentum p are related by λ = h/p. In order to measure the position of a particle X, photons
(or other particles) are scattered off particle X. The position indeterminacy of particle X
should be given by the wavelength λ of the photons. Due to the Compton effect, the scatter-
ing process then should cause a momentum disturbance of particle X of order p = h/λ. The
resulting product of position and momentum indeterminacies then should be of order h.

Heisenberg accepts that Matrix Mechanics describes discontinuous quantum transition;
but, in contrast to Born, he maintains the space-time continuum of Newtonian physics and
attributes the origin of discontinuities to disturbances caused by measurements. Thereby,
“neither the mathematical scheme of Quantum Mechanics requires a revision, nor is a revi-
sion of space-time geometry for small distances and times necessary”.40

Furthermore, the retention of classical continuity in space and time required a justifica-

38“Alle Begriffe, die in der klassischen Theorie zur Beschreibung eines mechanischen Systems verwendet
werden, lassen sich auch für atomare Vorgänge analog den klassischen Begriffen exakt definieren.”

39Further details about Bragg scattering, background contributions, and measurements of position uncer-
tainties are contained the appendix of ref.[5]

40“das mathematische Schema der Quantenmechanik [wird] keiner Revision bedürfen; ebensowenig wird eine
Revision der Raum–Zeit Geometrie für kleine Räume und Zeiten notwendig sein.”
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tion for the statistical nature of quantum transitions. Again, the measurement problem is
called to the rescue. “The fact that Quantum Theory may only provide the probability of
electron positions (in the 1S-state for example) may, according to Born and Jordan, be viewed
as characteristic and statistical elements of Quantum Theory in contrast to classical theory.
But we might also state, as Dirac does, that statistics is introduced by our experiments”.41

Heisenberg is in accord with Dirac, he specifies: “We did not assume that Quantum Theory
is an essentially statistical theory in contrast to classical theory.....The sharp formulation of
the causality law, ’if we know the present exactly, we are able to calculate the future’, is not
wrong due to the second part of the sentence, but because the precondition is wrong.”42 The
statistical outcome thereby is attributed to imprecise knowledge of initial conditions. This
argument applies equally to classical physics, which Heisenberg readily admits: “This would
not be different in classical theory.”43

Imprecise knowledge of initial conditions is invoked to retain the concept of classical elec-
tron orbits. Starting from some initial conditions, where both p and q are supposed to be
known with some indeterminacy, Heisenberg claims that
“within the limits of the indeterminacies, the values of q and p obey classical equations of
motion, as can be deduced directly from the quantum mechanical laws ṗ = −∂H

∂q
; q̇ = ∂H

∂p
. As

mentioned, the trajectory may only be computed statistically from the initial conditions, a fact
which may be considered to result from the essential indeterminacy of the initial conditions.”44

Although these remarks suggest that, in Heisenberg’s opinion, there should exist an underly-
ing world, which is deterministic, he declares such speculations to be meaningless:
“Physics should merely provide a formal description for relations between observations.”45

This remark indicates the different philosophical attitudes of Born and Heisenberg con-
cerning the question: “What should a physical theory in general, and Quantum Theory in
particular, achieve?” Born’s aim had been a logically consistent understanding of quantum
physics; Heisenberg is merely aiming at a formal description for relations between observations.

Pursuing this objective, Heisenberg was forced into one further ad hoc hypothesis: The
“reduction of the wave packet”. Describing the initial position indeterminacy of an electron
at some initial time by a wave packet, the wave packet should, according to Heisenberg’s own
reasoning, spread out in space with increasing time. Experimentally, however, single electrons
are only observed as particles, not as extended waves; Heisenberg’s “explanation” again in-
volves the measurement problem: “Every determination of position reduces the wave packet

41“Darin, dass in der Quantentheorie zu einem bestimmten Zustand, z. B. 1 S, nur die Wahrscheinlichkeits-
funktion des Elektronenortes angegeben werden kann, mag man mit Born und Jordan einen charakteristisch
statistischen Zug der Quantentheorie im Gegensatz zur klassischen Theorie erblicken. Man kann aber, wenn
man will, mit Dirac auch sagen, dass die Statistik durch unsere Experimente hereingebracht sei.”

42“Dass die Quantentheorie im Gegensatz zur klassischen eine wesentlich statistische Theorie sei in dem
Sinne, dass aus exakt gegebenen Daten nur statistische Schlüsse gezogen werden könnten, haben wir nicht
angenommen.... An der scharfen Formulierung des Kausalgesetzes: ‘Wenn wir die Gegenwart genau kennen,
können wir die Zukunft berechnen’, ist nicht der Nachsatz, sondern die Voraussetzung falsch”.

43“Dies wäre in der klassischen Theorie keineswegs anders.”
44“die Werte von p und q innerhalb dieser Genauigkeitsgrenzen den klassischen Bewegungsgleichungen Folge

leisten, kann direkt aus den quantenmechanischen Gesetzen ṗ = − ∂H
∂q

; q̇ = ∂H
∂p

geschlossen werden. Die Bahn
kann aber, wie gesagt, nur statistisch aus den Anfangsbedingungen berechnet werden, was man als Folge der
prinzipiellen Ungenauigkeit der Anfangsbedingungen betrachteten kann.”

45“Die Physik soll nur den Zusammenhang der Wahrnehmungen formal beschreiben.”
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to its original size.”46 This reduction of the wave packet is a special version of the general
“collapse of the wave function”. If, as is assumed by the Copenhagen interpretation, the time
dependent Schrödinger equation [4] describes the continuous evolution of a particular physical
system, then its mathematical form predicts the evolution from some particular initial state
into a superposition of many different physical states at some later time, in contradiction
to experimental observations. Here again the “measurement problem” is claimed to provide
the explanation: The act of measurement causes the “wave function collapse” to the state
actually observed. The collapse itself remains unexplained, which really means that this type
of “explanation” does not explain anything. But that, according to Heisenberg’s and Bohr’s
philosophy, does not constitute a problem, since “Physics should merely provide a formal de-
scription for relations between observations.”47

6.4 The Complementarity Principle

In April 1928, Bohr published a review [27], essentially in agreement with Heisenberg.
The space-time continuum of Newtonian physics and the conviction that all physical quan-
tities have exact values at all times remained as prerequisites for all further conclusions.
Slight differences between Heisenberg and Bohr are restricted to the emphasis attributed to
discontinuities or wave properties. While Heisenberg considered the particle concept and dis-
continuities caused by measurements to be of primary importance; Bohr emphasized the wave
character of particles. During the years preceding the discovery of the new quantum laws,
Bohr had steadfastly rejected Einstein’s photon concept of radiation; diffraction phenomena,
in Bohr’s view, provided definite proof of the wave character of radiation. Even if the discov-
ery of the Compton effect forced Bohr to admit the existence of light quanta, he persisted;
particle and wave character of photons should not be considered to be mutually exclusive, but
“complementary”. Similarly, observation of reflection maxima in scattering experiments of
electrons off crystalline surfaces “indisputably demonstrated” the wave character of electrons
and other particles as well.

Particle-wave duality, elevated to “Complementarity Principle”, played the crucial role
in Bohr’s interpretation of quantum physics. Nevertheless, the classical concepts of the old
Quantum Theory should still provide the framework for the description of all observations.
Bohr argued that all measurements have to rely on macroscopic, i.e. necessarily classical,
instruments. Measuring the properties of a quantum system, e.g. an atom, measuring appa-
ratus and atom should be viewed as one interrelated total system; no separate reality should
be attributed to the atom alone. And since the measuring instrument has to be described
classically, Bohr concluded, that the description of atomic properties, too, must be in terms
of classical concepts. The limits of obtainable accuracy in measuring physical quantities of
quantum systems should be determined by the limits of accuracy of the combined system,
consisting of quantum object and measuring apparatus. Applying this reasoning to the mea-
surement of electron position by optical means, Bohr invoked the resolution limit of classical
microscopes as limit to the accuracy of electron position. Assuming that arbitrarily accuracy
may be achieved using correspondingly shorter wave lengths, the particle character of photons
should cause correspondingly large momentum transfers due to the Compton effect, leading
to larger and larger inaccuracies of momentum.

46“Jede Ortsbestimmung reduziert das Wellenpaket wieder auf seine ursprüngliche Größe.”
47“Die Physik soll nur den Zusammenhang der Wahrnehmungen formal beschreiben.”
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Bohr relies on two hypotheses, which are both fundamentally wrong.
I) Classical instruments may be made arbitrarily precise; they may determine exact values
of physical quantities (e.g. position), but do not allow the simultaneous determination of its
canonically conjugated partner (here momentum).
This was Heisenberg’s main argument, when he invented the measurement problem; Heisen-
berg’s fundamental error has already been pointed out above.
Bohr’s second argument:
II) The limit of accuracy is given by the instrumental resolution.
This second argument is not only wrong, but in complete contradiction to experimental prac-
tice. Although progress in experimental methods was often essential in understanding quan-
tum phenomena, limited instrumental resolution has not prevented conclusions about scales,
far beyond the accuracy of the instruments themselves. Progress in quantum physics has
rather been obtained from new insight, which provided a consistent understanding of
observations. Thus, information about subatomic length scales is obtained from high momen-
tum transfer scattering experiments, relying on detectors whose accuracy is many orders of
magnitude worse.

But a consistent understanding of quantum physics was not Bohr’s objective, nor Heisen-
berg’s [26]: “Physics should merely provide a formal description for relations between observa-
tions.” And if mutually exclusive notions had to be invoked to describe different observations,
“ it is a question of convenience at what point the concept of observation involving the quan-
tum postulate with its inherent ’irrationality ’ is brought in......The two views of the nature
of light are rather to be considered as different attempts at interpretation of experimental
evidence”[27].

6.5 The Consolidation of the Copenhagen Interpretation

By 1930, Wave Mechanics superseded Matrix Mechanics almost completely; Quantum
Theory was identified with ’Schrödinger equation’. The space-time continuum of Newtonian
physics as prerequisite for the understanding of quantum physics was taken for granted. The
Copenhagen interpretation had gained widespread recognition; classical concepts, in partic-
ular continuity in space and time, remained to be its central doctrine. The book by Born
and Jordan ”Elementare Quantenmechanik” [18], published in 1930, constituted a belated
attempt to stem the tide. Right away on the first page of §1 we find:

”There can be no question of an ”explanation” of the unfamiliar quantum laws by means
of reduction to classical concepts; on the contrary the fundamental and primary character
of the basic quantum theoretical assumptions emerged clearly only due to new developments.
Progress consists precisely in abandonment of the remains of classical views; as a result a
self-contained theory emerged, which allows to describe all atomic processes consistently and
which contains the classical theory as special limit.” 48

48”Es ist also keine Rede von einer ”Erklärung” der fremdartigen Quantengesetze durch eine Zurückführung
auf klassische Vorstellungen; im Gegenteil ist der prinzipielle, primäre Charakter der quantentheoretischen
Grundannahmen erst durch die neuere Entwicklung klar zum Vorschein gekommen. Der Fortschritt besteht
gerade im Abstreifen der Reste klassischer Betrachtungsweise; dadurch ist eine in sich geschlossene Theorie
entstanden, die alle Atomvorgänge widerspruchsfrei zu beschreiben gestattet und die klassische Theorie als
speziellen Grenzfall enthält.”
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Pauli, who had become the most fervent advocate of the Copenhagen interpretation, re-
acted by a scathing review [28]. Start and finish are outright ridicule:
”The book is the second volume of a series, which explains aim and meaning of the n’th volume
by the virtual existence of the (n+1)’th volume........ The features of the book as far as print
and paper are concerned are excellent”.
In between Pauli criticizes the algebraic methods as
”inhibiting the insight into scope and internal logic (!) of the theory....such as the statistical
interpretation of Quantum Mechanics (!)”.
Condescending advice is given to Born and Jordan (authors of the fundamental laws of Quan-
tum Theory!) not to delve into statements of principle, such as the postulate
”to represent each physical quantity by a matrix”,
and leave the interpretation to the true owners of the understanding, i.e. the followers of the
Copenhagen interpretation.
”The meaning of such a ”representation” of a physical quantity in reality can be understood
only due to later conclusions”,
i.e. Heisenberg’s explanation of “indeterminacies”, Bohr’s stationary states, collapse of the
wave function, complementarity, and particle-wave duality. Therefore Born and Jordan should
”restrict the theory to the methods of measurements of particle position and momentum or of
energy eigenvalues of stationary states and to the postulates of possible measurements obtained
from the general wave-particle experience.”

If Quantum Theory is widely not understood until today, it is due to the “success” of the
Copenhagen interpretation. Majority opinion attributed the Nobel prize for 1932 to Heisen-
berg “For the creation of quantum mechanics”. During the following decades, the Copenhagen
interpretation constituted the basis for almost all textbooks on Quantum Mechanics. This
heritage dominates teaching of elementary Quantum Theory until today.

7 Conclusion

The scientific revolutions of the first quarter of the 20’th century, Relativity Theory and
Quantum Theory, both rest on fundamental principles, imposed by universal constants. Rel-
ativity Theory is based in on the velocity of light c being a universal constant. Velocity of
light c not being infinite requires a redefinition of space-time on large and cosmological scales.
Einstein recognized that there is no space-time given “a-priori”, independent of all empirical
facts. Physical notions of space and time are related to measurements, and, light velocity not
being infinite, implied that measurements of spacial distances and time intervals depend on
the reference system from which measurements are performed. Einstein required that this
should be reflected by the basic laws of Relativity Theory.

The primary aim of this paper is to demonstrate that quantization of action in terms of a
finite, i.e. non vanishing, universal quantity h requires a redefinition of space-time on atomic
and subatomic scales. It was Max Born who discovered the key to understanding quantum
physics. The step taken was even more radical than Einstein’s. While Relativity Theory still
retained the continuum, albeit reference dependent, Born recognized that the continuum as
prerequisite to all understanding must be replaced by a discreet manifold on the elementary
quantum scale. Action variables may only change by integer multiples of Planck’s quantum of
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action, requiring all other physical quantities to change by finite steps as well. Furthermore,
discreetness of all events in nature eliminates the justification for determinism, implied by
the differential equations of classical physics. All elementary processes in nature are discreet
and governed by statistical laws. And, similar to Einstein, Born required that this should
be reflected by the basic laws of Quantum Theory. Consistent with the discreet character of
nature, Born and Jordan derived the basic laws of Quantum Theory in discreet mathematical
forms, Matrix Mechanics.

Born-Wiener [19] and Schrödinger [3, 4] soon replaced matrices by field theoretical forms,
easier to handle mathematically. But, in addition to easier mathematics, field theoretical forms
led to fundamental misunderstandings. The variables r and t of Schrödinger’s wave function
suggested Newtonian space-time coordinates; the dependence on the continuous variable t
was interpreted as continuous variation of physical quantities in time. This misunderstand-
ing was enforced, when Matrix and Wave Mechanics were shown to be equivalent. Born on
one side and Schrödinger on the other had opposing views of this equivalence, which may be
distinguished by “Born equivalence” vs. “Schrödinger equivalence”. The latter be-
came official doctrine, finalized by the supposed equivalence of “Schrödinger representation”
(states are time dependent) and “Heisenberg representation” (operators are time dependent,
eq. 10). In section 5 (“Time in Quantum Physics”) the difference between time t as external
parameter and time for closed systems has been highlighted. In §22 of the book “Elementare
Quantemnechanik” (ref. [18]), Born specifies that time t in the Heisenberg representation
must be considered as external parameter, not directly relevant for the temporal behavior
of individual quantum systems. But Born’s insistence was completely lost by the scientific
community. The letter t was interpreted in Schrödinger’s sense as Newtonian time.

Discontinuous changes of action variables by integer multiples of Planck’s constant h rep-
resent the key to understanding Quantum Theory. The mathematical implementation of
this basic requirement resulted in commutation relations for canonically conjugated physical
quantities. All further conclusions are direct consequences of this quantization condition.
Most importantly: There is no continuous physical time. Concerning origin and physical
significance of commutation relations, the scientific community widely ignored Born’s reason-
ing. Field theoretical representations and the advent of quantum field theory consolidated the
general conviction, that Quantum Theory retains Newtonian space-time notions, physical pro-
cesses occurring continuously in space-time. But changing mathematical representations from
discreet matrix calculus to operators and functions of continuous variables does not alter the
physical content. All of physics is contained in matrix elements, and the use of commutation
relations guarantees that matrix elements are independent of the particular representation
used to obtain them. Actually, a close look at the application of Quantum Theory to the
analysis of experimental results reveals that “Born equivalence” does constitute general prac-
tice! Typically, the original assumption of continuity in time is abandoned at the very end:
Experimental evidence is incompatible with what a continuum theory would predict. To ob-
tain accord with observed facts, the application of Born’s statistical interpretation becomes
necessary, which implicitly means that discreetness has been reintroduced through the back
door. Any type of “collapse of the wave function” is equivalent to Born’s statistical inter-
pretation and the recognition of discreetness. While typical language upholds “Schrödinger
equivalence”, final practice amounts to “Born equivalence”.
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A logically consistent understanding of Quantum Theory is obtained by going back to
the origin: Max Born not only provided the first representation of its fundamental equations
(together with Pascual Jordan [1]), he also recognized the basic principles of quantum physics.
Nature is discreet and statistical at the elementary level: “Action variables may only
change by integer multiples of h, requiring all other physical quantities to change
by finite steps as well”.

Acknowledgment: Many thanks to Efim I. Kats for helpful comments.
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